equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
Efeito termiônico é o aumento do fluxo de elétrons que saem de um metal, devido ao aumento de temperatura. Ao aumentar-se substancialmente a temperatura do metal, há uma facilidade maior para a saída dos elétrons.
O fenômeno foi inicialmente descrito em 1873 por Frederick Guthrie na Inglaterra enquanto trabalhava em experimentos com objetos carregados. Ele notou comportamentos diferenciados para esferas de metal carregadas com temperaturas muito elevadas, relativo a sua descarga.
O efeito termiônico foi acidentalmente redescoberto por Thomas Edison em 1880, enquanto tentava descobrir a razão para a ruptura de filamentos da lâmpada incandescente.
Edison construiu um bulbo com a superfície interior coberta com uma folha de metal. Conectou a folha ao filamento da lâmpada com um galvanômetro. Quando na folha foi dada uma carga mais negativa do que a do filamento, nenhuma corrente fluiu entre a folha e o filamento porque a folha fria emitiu poucos elétrons. Entretanto, quando na folha foi dada uma carga mais positiva do que a do filamento, muitos elétrons emissores do filamento quente foram atraídos à folha, fazendo com que a corrente fluísse. Este fluxo de sentido único da corrente foi chamado de efeito Edison. Edison não viu nenhum uso para este efeito, embora o patenteasse em 1883.
O físico britânico John Ambrose Fleming, descobriu que o efeito poderia ser usado para detectar ondas de rádio. Fleming trabalhou no desenvolvimento de um tubo de vácuo de dois elementos, conhecido como diodo. Owen Willans Richardson trabalhou com emissão termiônica e recebeu o prêmio Nobel em 1928 em função de seu trabalho e da lei que leva seu nome, a lei de Richardson. Em todo o metal, há um ou dois elétrons por átomo que estão livres para moverem-se de um átomo para outro. Suas velocidades seguem uma distribuição estatística, melhor que ser uniformes, e ocasionalmente um elétron terá velocidade suficiente para sair do metal sem voltar. A quantidade mínima de energia que necessária para que um elétron saia da superfície é chamada a função trabalho, e varia de metal para metal. Um revestimento fino do óxido é aplicado a superfície do metal nos tubos de vácuo para diminuir a função trabalho, pois assim é mais fácil para os elétrons deixarem a superfície do óxido.
A lei de Richardson, também chamada de equação de Richardson-Dushmann, relaciona a densidade de corrente emitida com a temperatura:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde 'T' é a temperatura em kelvin, 'W' é a função trabalho, 'k' é a constante de Boltzmann.
A constante de proporcionalidade 'A', conhecida como constante de Richardson, é dada por:
- A m-2 K-2
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde 'm' e 'e' são a massa e a carga do elétron, e 'h' é a constante de Planck.
Devido à função exponencial, a corrente aumenta rapidamente com a temperatura.
O efeito termiônico é de fundamental importância na eletrônica.
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função da frequência e da temperatura do corpo negro.
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A tabela seguinte descreve as variáveis e unidades utilizadas:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Variável Descrição Unidade radiância espectral J•s−1•m−2•sr−1•Hz−1 frequência hertz temperatura do corpo negro kelvin constante de Planck joule / hertz velocidade da luz no vácuo metros / segundo número de Euler sem dimensão constante de Boltzmann joule / kelvin
O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A energia espectral também pode ser expressa como função do comprimento de onda:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à frequência de oscilação [1]:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
.
Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiância espectral tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.
Comentários
Postar um comentário